Cellular Automata
This component implements the cellular automaton as described by [3].
We depend on the box properties being defined. Each Facies
should have a viability_range
and activation_range
defined. Two other parameters are the ca_interval
setting how many time steps between every CA advancement, and the ca_random_seed
setting the random seed for generating the initial noise.
@kwdef struct Facies <: AbstractFacies
viability_range::Tuple{Int,Int} = (4, 10)
activation_range::Tuple{Int,Int} = (6, 10)
end
@kwdef struct Input <: AbstractInput
ca_interval::Int = 1
ca_random_seed::Int = 0
end
The state of the CA is stored in ca
and ca_priority
.
@kwdef mutable struct State <: AbstractState
ca::Matrix{Int}
ca_priority::Vector{Int}
end
The rules
function computes the next value of a cell, given the configured vector of facies, the current facies priority order, and a neighbourhood around the cell.
function rules(facies, ca_priority, neighbourhood)
cell_facies = neighbourhood[3, 3]
neighbour_count(f) = sum(neighbourhood .== f)
if cell_facies == 0
for f in ca_priority
n = neighbour_count(f)
(a, b) = facies[f].activation_range
if a <= n && n <= b
return f
end
end
0
else
n = neighbour_count(cell_facies) - 1
(a, b) = facies[cell_facies].viability_range
(a <= n && n <= b ? cell_facies : 0)
end
end
The paper talks about cycling the order of preference for occupying an empty cell at each iteration. This means that the rules change slightly every iteration. We need this extra function so that we know the boundary type BT
at compile time.
"""
step_ca(box, facies)
Creates a propagator for the state, updating the celullar automaton in place.
Contract: the `state` should have `ca::Matrix{Int}` and `ca_priority::Vector{Int}`
members.
"""
function step_ca(box::Box{BT}, facies) where {BT<:Boundary{2}}
tmp = Matrix{Int}(undef, box.grid_size)
facies_ = facies
function (state)
stencil!(BT, Size(5, 5), tmp, state.ca) do nb
rules(facies_, state.ca_priority, nb)
end
state.ca, tmp = tmp, state.ca
state.ca_priority = circshift(state.ca_priority, 1)
return state
end
end
Plot
#| creates: ["docs/src/_fig/ca-long-term.svg"]
#| collect: figures
module Script
using CarboKitten
using CarboKitten.Components: CellularAutomaton as CA
using CairoMakie
function main()
input = CA.Input(
box = CarboKitten.Box{Periodic{2}}(
grid_size=(50, 50), phys_scale=1.0u"m"),
facies = fill(CA.Facies(), 3)
)
state = CA.initial_state(input)
step! = CA.step!(input)
for _ in 1:1000
step!(state)
end
fig = Figure(size=(1000, 500))
axes_indices = Iterators.flatten(eachrow(CartesianIndices((2, 4))))
xaxis, yaxis = box_axes(input.box)
i = 1000
for row in 1:2
for col in 1:4
ax = Axis(fig[row, col], aspect=AxisAspect(1), title="step $(i)")
if row == 2
ax.xlabel = "x [m]"
end
if col == 1
ax.ylabel = "y [m]"
end
heatmap!(ax, xaxis/u"m", yaxis/u"m", state.ca)
step!(state)
i += 1
end
for _ in 1:996
step!(state)
i += 1
end
end
save("docs/src/_fig/ca-long-term.svg", fig)
end
end
Script.main()
Tests
module CellularAutomatonSpec
using Test
using CarboKitten.Components.Common
using CarboKitten.Components: CellularAutomaton as CA
@testset "Components/CellularAutomaton" begin
let facies = fill(CA.Facies((4, 10), (6, 10)), 3),
input1 = CA.Input(
box=Box{Periodic{2}}(grid_size=(50, 50), phys_scale=1.0u"m"),
facies=facies),
input2 = CA.Input(
box=Box{Periodic{2}}(grid_size=(50, 50), phys_scale=1.0u"m"),
facies=facies,
ca_random_seed=1)
state1 = CA.initial_state(input1)
state2 = CA.initial_state(input2)
state3 = CA.initial_state(input2)
@test CA.initial_state(input1).ca == CA.initial_state(input1).ca
@test state1.ca != state2.ca
step! = CA.step!(input1) # inputs have same rules
for i in 1:20
step!(state1)
step!(state2)
step!(state3)
end
@test state1.ca != state2.ca
@test state2.ca == state3.ca
end
end
end
Component
@compose module CellularAutomaton
@mixin Boxes, FaciesBase
using ..Common
using ...Stencil: stencil!
using Random
<<ca-input>>
<<ca-state>>
<<ca-step>>
function initial_state(input::AbstractInput)
n_facies = length(input.facies)
ca = rand(MersenneTwister(input.ca_random_seed), 0:n_facies, input.box.grid_size...)
return State(ca, 1:n_facies |> collect)
end
function step!(input::AbstractInput)
return step_ca(input.box, input.facies)
end
end