References

[1]
H. Bosscher and W. Schlager. Computer simulation of reef growth. Sedimentology 39, 503–512 (1992).
[2]
K. G. Miller, J. V. Browning, W. J. Schmelz, R. E. Kopp, G. S. Mountain and J. D. Wright. Cenozoic sea-level relative to modern from deep-sea geochemical and continental margin records (2020).
[3]
C. Paola, P. L. Heller and C. L. Angevine. The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory. Basin research 4, 73–90 (1992).
[4]
S. C. James, C. A. Jones, M. D. Grace and J. D. Roberts. Advances in sediment transport modelling. Journal of Hydraulic Research 48, 754–763 (2010).
[5]
P. M. Burgess. CarboCAT: A cellular automata model of heterogeneous carbonate strata. Computers & geosciences 53, 129–140 (2013).
[6]
K. G. Miller, M. A. Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie-Blick and S. F. Pekar. The Phanerozoic Record of Global Sea-Level Change. Science 310, 1293–1298 (2005). Publisher: American Association for the Advancement of Science.
[7]
Y. Yang, Y.-C. Lang, S. Xu, C.-Q. Liu, L.-F. Cui, S. P. Freeman and K. M. Wilcken. Combined unsteady denudation and climatic gradient factors constrain carbonate landscape evolution: New insights from in situ cosmogenic 36Cl. Quaternary Geochronology 58, 101075 (2020). Accessed on Jul 24, 2024.
[8]
F. Thomas, V. Godard, O. Bellier, L. Benedetti, V. Ollivier, M. Rizza, V. Guillou, F. Hollender, G. Aumaître, D. L. Bourlès and K. Keddadouche. Limited influence of climatic gradients on the denudation of a Mediterranean carbonate landscape. Geomorphology 316, 44–58 (2018).
[9]
K. Krklec, R. Braucher, D. Perica and D. Domínguez-Villar. Long-term denudation rate of karstic North Dalmatian Plain (Croatia) calculated from 36Cl cosmogenic nuclides. Geomorphology 413, 108358 (2022). Accessed on Jul 24, 2024.
[10]
[11]
[12]
[13]
[14]
G. Tucker, S. Lancaster, N. Gasparini and R. Bras. The Channel-Hillslope Integrated Landscape Development Model (CHILD). In: Landscape Erosion and Evolution Modeling, edited by R. S. Harmon and W. W. Doe (Springer US, 2001); pp. 349–388. Accessed on Jul 24, 2024.
[15]
M. J. Van De Wiel, T. J. Coulthard, M. G. Macklin and J. Lewin. Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology 90, 283–301 (2007). Accessed on Jul 24, 2024.